Experimental AI separates mild COVID from serious trouble to come

A disease that hits most people mildly but some very hard—and so wreaks havoc with its unpredictability among the infected—would seem a good target for AI’s predictive prowess.

So it went with COVID-19 against a severity-sniffing algorithm in a small but promising study.

Developed by researchers at New York University in partnership with two hospitals in China, the experimental decision-support tool may help ER physicians decide which patients to admit and which to send home. That’s a critical decision to make during a pandemic that is stretching many hospitals’ resources past capacity.

To test the AI tool, researchers collected demographic, laboratory and radiological findings from 53 patients who, in January, tested positive for the novel coronavirus at the two Chinese hospitals participating in the study.

As has been typical around the world, nearly all 53 patients initially presented with mild cough, fever and stomach upset. Within a week, though, a minority of the patients had developed severe pneumonia or acute respiratory distress syndrome (ARDS).

It turned out that, contrary to earlier small studies, patterns seen in lung imaging and other markers—including age and sex—were not helpful in predicting which patients would get sickest.

Rather, the AI tool found, changes in three physiological metrics were the best predictors of severe disease soon to develop: elevated hemoglobin levels, deep muscle aches (myalgia), and slightly raised levels of the liver enzyme alanine aminotransferase.

Weighing these readings together with other factors, the team applied its AI tool and predicted risk of ARDS with up to 80% accuracy.

The work was published online March 30 in Computers, Materials & Continua.

In a news release sent by NYU, corresponding study author Megan Coffee, MD, PhD, says the model needs to be validated in larger studies.

Still, she adds, it “holds promise as another tool to predict the patients most vulnerable to the virus,” albeit “only in support of physicians’ hard-won clinical experience in treating viral infections.”

Click here for the news release and here for the full study.

Dave Pearson

Dave P. has worked in journalism, marketing and public relations for more than 30 years, frequently concentrating on hospitals, healthcare technology and Catholic communications. He has also specialized in fundraising communications, ghostwriting for CEOs of local, national and global charities, nonprofits and foundations.

Around the web

Compensation for heart specialists continues to climb. What does this say about cardiology as a whole? Could private equity's rising influence bring about change? We spoke to MedAxiom CEO Jerry Blackwell, MD, MBA, a veteran cardiologist himself, to learn more.

The American College of Cardiology has shared its perspective on new CMS payment policies, highlighting revenue concerns while providing key details for cardiologists and other cardiology professionals. 

As debate simmers over how best to regulate AI, experts continue to offer guidance on where to start, how to proceed and what to emphasize. A new resource models its recommendations on what its authors call the “SETO Loop.”