Deep learning auto-triages pediatric ER patients

Using a dataset of records from nearly 3 million pediatric patients, South Korean researchers have developed and validated a deep-learning algorithm that can tell emergency doctors which children will need to be admitted to critical-care units.

Reporting their findings online July 1 in Pediatric Emergency Care, the team noted that, in their country, ER overcrowding is “a national crisis in which pediatric patients are often prioritized at lower levels.”

The researchers work at Mediplex Sejong Hospital and Sejong General Hospital, and their study used data from the ERs at those institutions and at 149 others.  

For identifying patients as needing critical care, their deep-learning technique achieved an area under the ROC curve (AUC) of 0.908.

This put it handily ahead of conventional systems for scoring pediatric early warnings (0.812) and triaging patients on observed acuity (0.782).

In addition, the deep-learning algorithm bested two machine-learning methods, random forest (0.88) and logistic regression (0.851).

The deep-learning algorithm also proved much more accurate than all other approaches at identifying patients who needed non-critical hospitalization.

The authors stated they set out on the present project because predicting ER prognoses, especially for pediatric patients, is “important but difficult.”

Dave Pearson

Dave P. has worked in journalism, marketing and public relations for more than 30 years, frequently concentrating on hospitals, healthcare technology and Catholic communications. He has also specialized in fundraising communications, ghostwriting for CEOs of local, national and global charities, nonprofits and foundations.

Around the web

CMS finalized a significant policy change when it increased the Medicare payments hospitals receive for performing CCTA exams. What, exactly, does the update mean for cardiologists, billing specialists and other hospital employees?

Stryker, a global medtech company based out of Michigan, has kicked off 2025 with a bit of excitement. The company says Inari’s peripheral vascular portfolio is highly complementary to its own neurovascular portfolio.

RBMA President Peter Moffatt discusses declining reimbursement rates, recruiting challenges and the role of artificial intelligence in transforming the industry.