Adult asthma diagnosable by deep learning

Using a deep neural network equipped with all patient information relevant to diagnosing adult asthma, researchers in Japan have achieved 98% diagnostic accuracy.

This topped the performance of two AI-aided models using similarly thorough patient information, logistic analysis (94% accuracy) and support vector machine learning (82%).

Katsuyuki Tomita, MD, PhD, of Yonago Medical Center and colleagues reported their findings online May 30 in Allergology International.

The team also tested the three techniques using only physical symptoms presented by the 566 patients who made up their study cohort. Here the deep neural network still bested the other techniques, achieving 68% accuracy vs. 65% for logistic analysis and 60% for support vector machine learning.

The full complement of patient information included not only physical symptoms but also biochemical findings, lung function test results and results from a bronchial challenge test.

For the study, the definitive diagnosis against which the models were checked came from asthma specialists working with all relevant patient data.

In their discussion, Tomita et al. state that their study is probably the first in which computers performed nearly as well as human experts at diagnosing adult asthma.

“Our simple approach using deep neural networks is more accurate than conventional machine learning methods and can be employed to implement practical personal assistant services,” they write. “The next step [is] to persuade more hospitals to use the technology and investigate transferring the AI-based [approach] to primary care.”

The journal has posted the study in full for free.

Dave Pearson

Dave P. has worked in journalism, marketing and public relations for more than 30 years, frequently concentrating on hospitals, healthcare technology and Catholic communications. He has also specialized in fundraising communications, ghostwriting for CEOs of local, national and global charities, nonprofits and foundations.

Around the web

The tirzepatide shortage that first began in 2022 has been resolved. Drug companies distributing compounded versions of the popular drug now have two to three more months to distribute their remaining supply.

The 24 members of the House Task Force on AI—12 reps from each party—have posted a 253-page report detailing their bipartisan vision for encouraging innovation while minimizing risks. 

Merck sent Hansoh Pharma, a Chinese biopharmaceutical company, an upfront payment of $112 million to license a new investigational GLP-1 receptor agonist. There could be many more payments to come if certain milestones are met.