Algorithm for managing diabetes 90% accurate at risk prediction

Where people reside can affect the overall profile of their social determinants of health (SDH).

New research shows machine learning can tease out which particular location-specific—or “area-level”—SDHs warrant close monitoring in patients who have diabetes and are at risk of losing control over it.  

The study presenting the findings is running in the August edition of the American Public Health Association’s Medical Care.

The study team, led by Sanjay Basu, MD, PhD, of Stanford and Harvard, analyzed claims data on more than 1 million patients with type 2 diabetes mellitus.

To draw risk predictions from this data, they applied a standard logistic-regression model and, for comparison, several machine-learning models.

Logistic regression performed poorly, with sensitivity of 25.6% and accuracy of 68%.

Meanwhile, the best machine-learning model had sensitivity of 68.5% and accuracy of 90.6%.

They further found that SDH variables alone explained 16.9% of variation in uncontrolled diabetes.

“A predictive model developed through a machine-learning approach may assist healthcare organizations to identify which area-level SDH data to monitor for prediction of diabetes control, for potential use in risk-adjustment and targeting,” the authors concluded.

Dave Pearson

Dave P. has worked in journalism, marketing and public relations for more than 30 years, frequently concentrating on hospitals, healthcare technology and Catholic communications. He has also specialized in fundraising communications, ghostwriting for CEOs of local, national and global charities, nonprofits and foundations.

Around the web

The American College of Cardiology has shared its perspective on new CMS payment policies, highlighting revenue concerns while providing key details for cardiologists and other cardiology professionals. 

As debate simmers over how best to regulate AI, experts continue to offer guidance on where to start, how to proceed and what to emphasize. A new resource models its recommendations on what its authors call the “SETO Loop.”

FDA Commissioner Robert Califf, MD, said the clinical community needs to combat health misinformation at a grassroots level. He warned that patients are immersed in a "sea of misinformation without a compass."

Trimed Popup
Trimed Popup