New AI-powered imaging technique IDs colorectal cancer with 100% accuracy

A new imaging technique that uses deep learning technology can identify tumors in colorectal tissue samples with 100% accuracy, according to findings published in Theranostics

The study’s authors tested their technique, pattern recognition optical coherence tomography (PR-OCT), on 26,000 optical coherence tomography (OCT) images, achieving a sensitivity of 100% and a specificity of 99.7%. OCT is typically used to capture images of a patient’s retina, but researchers have started evaluating its efficiency in other areas as well.

Senior author Quing Zhu, PhD, a professor of biomedical engineering at Washington University in St. Louis, and colleagues hope their technique can serve as an “optical biopsy tool” for physicians in the near future.

“We think this technology, combined with the colonoscopy endoscope, will be very helpful to surgeons in diagnosing colorectal cancer,” Zhu said in a prepared statement. “More research is necessary, but the idea is that when the surgeons use colonoscopy to examine the colon surface, this technology could be zoomed in locally to help make a more accurate diagnosis of deeper precancerous polyps and early-stage cancers versus normal tissue.”

“The unique part of our system is that we could detect a structural pattern within the image,” lead author Yifeng Zeng, a biomedical engineering doctoral student at Washington University, said in the same statement. “Using OCT, we are imaging something that we can find a pattern across all normal tissues. Then we can use this pattern to classify abnormal and cancerous tissue for accurate diagnosis.”

The full Theranostics study can be downloaded at this link.

Michael Walter
Michael Walter, Managing Editor

Michael has more than 18 years of experience as a professional writer and editor. He has written at length about cardiology, radiology, artificial intelligence and other key healthcare topics.

Around the web

The tirzepatide shortage that first began in 2022 has been resolved. Drug companies distributing compounded versions of the popular drug now have two to three more months to distribute their remaining supply.

The 24 members of the House Task Force on AI—12 reps from each party—have posted a 253-page report detailing their bipartisan vision for encouraging innovation while minimizing risks. 

Merck sent Hansoh Pharma, a Chinese biopharmaceutical company, an upfront payment of $112 million to license a new investigational GLP-1 receptor agonist. There could be many more payments to come if certain milestones are met.