AI picks the right test for chest pain

Yale researchers have demonstrated a machine learning tool for choosing between coronary imaging and stress testing in patients who present with suspected coronary artery disease.  

In a study current in European Heart Journal, the team shows how the personalized-care tool consistently picked the optimal exam for achieving good outcomes in more than 2,100 patients.

Additionally, the tool avoided algorithmic bias by leveraging both arms of a major clinical trial to neutralize the skewing effect that real-world clinical decisions can have on study data.

“Our approach synthesizes the complex relationship between a large number of pre-randomization characteristics in creating and visualizing a comprehensive phenomap of patients, with an individualized assessment of the risk of adverse cardiovascular events with anatomical or functional testing for assessing chest pain,” the authors write.

The team recorded a significantly reduced risk of adverse cardiac events in patients whose exam choices matched those the AI tool would have recommended had it been there.

In Yale’s own coverage of the work, Evangelos Oikonomou, MD, DPhil, says the AI tool is technically sophisticated but practical for clinical settings.

“It relies on routinely captured patient characteristics and can be used by clinicians with a simple online calculator or can be incorporated in the electronic health record,” he says.

The study is posted in full for free.

Dave Pearson

Dave P. has worked in journalism, marketing and public relations for more than 30 years, frequently concentrating on hospitals, healthcare technology and Catholic communications. He has also specialized in fundraising communications, ghostwriting for CEOs of local, national and global charities, nonprofits and foundations.

Around the web

The American College of Cardiology has shared its perspective on new CMS payment policies, highlighting revenue concerns while providing key details for cardiologists and other cardiology professionals. 

As debate simmers over how best to regulate AI, experts continue to offer guidance on where to start, how to proceed and what to emphasize. A new resource models its recommendations on what its authors call the “SETO Loop.”

FDA Commissioner Robert Califf, MD, said the clinical community needs to combat health misinformation at a grassroots level. He warned that patients are immersed in a "sea of misinformation without a compass."

Trimed Popup
Trimed Popup