'Smart' molecules give white blood cells an appetite for cancer cells

Researchers have developed smart protein molecules to reprogram white blood cells to fight cancer cells and other infectious diseases, stopping the spread of the disease. Findings were published in Nature Communications.

iSNAPS (integrated sensing and activating proteins), the smart protein, detects molecular signals in cells to enable white blood cells to fight disease. Macrophage white blood cells, when contacting cancer cells, are sent a “don’t eat” signal. With iSNAPS, the signal is changed to “eat” and the white blood cells can consume and destroy cancer cells.

In the study, led by bioengineering professors Peter Yingxiao Wang and Shu Chien of the University of California, San Diego, researchers examined the effectiveness of iSNAPS in reprogramming macrophage white blood cells to be able to consume cancer cells.

Results showed white blood cells could consume cancer cells using active iSNAPS. When the iSNAPS were disabled, the macrophage was still able to detect the presence of the cancer cell but could not eat them. Researchers hope to develop iSNAPS to battle cancer cells and other infectious diseases.

""
Cara Livernois, News Writer

Cara joined TriMed Media in 2016 and is currently a Senior Writer for Clinical Innovation & Technology. Originating from Detroit, Michigan, she holds a Bachelors in Health Communications from Grand Valley State University.

Around the web

More than 40 U.S. healthcare organizations are urging Congress not to make sweeping Medicaid cuts that could result in approximately 7.6 million Americans losing health insurance.

If President Trump initiates a 25% tariff against pharmaceuticals imported from Ireland, it might impact the price for X-ray iodine contrast agents in the U.S. depending what rules are put in place.

The imaging manufacturer expects to spend between $227 million and $340 million on tariff mitigation efforts, leaders said Wednesday.