Machine learning can predict individuals at risk of suicide

Analyzing brain patterns with machine learning could predict people at risk of suicide, according to a study published in Nature Human Behavior.

In people contemplating suicide, words like “death” and “trouble” produce a specific signal in the brain that could be used to prevent an attempt. In the study, researchers had volunteers enter a brain scanner with a display that would flash words like “apathy,” “death” and “praise.”

"We could tell what emotion a person was feeling, we could tell what social interaction they're thinking about," Marcel Just, an author of the paper and the D.O. Hebb professor of cognitive neuroscience at Carnegie Mellon University, told NPR. "And we thought well, maybe the brain activation patterns of certain thoughts are altered in people who are thinking about suicide."

Brain activity was collected in response to each word and sent to a computer where a machine learning program would differentiate between suicidal brain signals and others. The program, which was able to differentiate between suicidal individuals 90 percent of the time, also distinguished between people who had attempted suicide and those who just thought about it.

"It correctly identified 15 of the 17 suicidal participants and 16 of the 17 controls," wrote Just.

""
Cara Livernois, News Writer

Cara joined TriMed Media in 2016 and is currently a Senior Writer for Clinical Innovation & Technology. Originating from Detroit, Michigan, she holds a Bachelors in Health Communications from Grand Valley State University.

Around the web

With generative AI coming into its own, AI regulators must avoid relying too much on principles of risk management—and not enough on those of uncertainty management.

Cardiovascular devices are more likely to be in a Class I recall than any other device type. The FDA's approval process appears to be at least partially responsible, though the agency is working to make some serious changes. We spoke to a researcher who has been tracking these data for years to learn more. 

Updated compensation data includes good news for multiple subspecialties. The new report also examines private equity's impact on employment models and how much male cardiologists earn compared to females.

Trimed Popup
Trimed Popup