3D-bioprinted cartilage undifferentiable from human cartilage

3D printing is now capable of producing prosthetics and generating cartilage tissue from stem cells. Led by researchers at Sweden's Sahlgrenska Academy, a study published in Scientific Reports reviews 3D bioprinting as a nest step in using human cells to print cartilage that is identical to human-harvested cartilage.

Collaborating with experts in 3D bioprinting at Chalmers University of Technology in Göteborg, Sweden, the researchers harvested cartilage cells from patients undergoing knee surgery and manipulated them in a laboratory to form stem cells. The stem cells were then expanded in nanofibrillated cellulose to be printable in a 3D bioprinter. After being printed out, the cells were treated with growth factors to develop into cartilage tissue.

"In nature, the differentiation of stem cells into cartilage is a simple process, but it's much more complicated to accomplish in a test tube. We're the first to succeed with it, and we did so without any animal testing whatsoever," said Stina Simonsson, associate professor of cell biology, who lead the research team's efforts. "We investigated various methods and combined different growth factors. Each individual stem cell is encased in nanocellulose, which allows it to survive the process of being printed into a 3D structure. We also harvested mediums from other cells that contain the signals that stem cells use to communicate with each other so called conditioned medium. In layman's terms, our theory is that we managed to trick the cells into thinking that they aren't alone.”

Comparable to normal human cartilage, the 3D-printed cartilage contained type 2 collagen that provided a structure seen in human cartilage. The cartilage was examined by surgeons, who found no difference between 3D-printed variety and real cartilage. Researchers believe the 3D bioprinting of cartilage from a patient’s own cells could be used to treat osteoarthritis and other damaged cartilage within the body.

"The structure of the cellulose we used might not be optimal for use in the human body,” said Simonsson. “Before we begin to explore the possibility of incorporating the use of 3D-bioprinted cartilage into the surgical treatment of patients, we need to find another material that can be broken down and absorbed by the body so that only the endogenous cartilage remains, the most important thing for use in a clinical setting is safety.” 

""
Cara Livernois, News Writer

Cara joined TriMed Media in 2016 and is currently a Senior Writer for Clinical Innovation & Technology. Originating from Detroit, Michigan, she holds a Bachelors in Health Communications from Grand Valley State University.

Around the web

The tirzepatide shortage that first began in 2022 has been resolved. Drug companies distributing compounded versions of the popular drug now have two to three more months to distribute their remaining supply.

The 24 members of the House Task Force on AI—12 reps from each party—have posted a 253-page report detailing their bipartisan vision for encouraging innovation while minimizing risks. 

Merck sent Hansoh Pharma, a Chinese biopharmaceutical company, an upfront payment of $112 million to license a new investigational GLP-1 receptor agonist. There could be many more payments to come if certain milestones are met.