Deep learning auto-triages pediatric ER patients

Using a dataset of records from nearly 3 million pediatric patients, South Korean researchers have developed and validated a deep-learning algorithm that can tell emergency doctors which children will need to be admitted to critical-care units.

Reporting their findings online July 1 in Pediatric Emergency Care, the team noted that, in their country, ER overcrowding is “a national crisis in which pediatric patients are often prioritized at lower levels.”

The researchers work at Mediplex Sejong Hospital and Sejong General Hospital, and their study used data from the ERs at those institutions and at 149 others.  

For identifying patients as needing critical care, their deep-learning technique achieved an area under the ROC curve (AUC) of 0.908.

This put it handily ahead of conventional systems for scoring pediatric early warnings (0.812) and triaging patients on observed acuity (0.782).

In addition, the deep-learning algorithm bested two machine-learning methods, random forest (0.88) and logistic regression (0.851).

The deep-learning algorithm also proved much more accurate than all other approaches at identifying patients who needed non-critical hospitalization.

The authors stated they set out on the present project because predicting ER prognoses, especially for pediatric patients, is “important but difficult.”

Dave Pearson

Dave P. has worked in journalism, marketing and public relations for more than 30 years, frequently concentrating on hospitals, healthcare technology and Catholic communications. He has also specialized in fundraising communications, ghostwriting for CEOs of local, national and global charities, nonprofits and foundations.

Around the web

With generative AI coming into its own, AI regulators must avoid relying too much on principles of risk management—and not enough on those of uncertainty management.

Cardiovascular devices are more likely to be in a Class I recall than any other device type. The FDA's approval process appears to be at least partially responsible, though the agency is working to make some serious changes. We spoke to a researcher who has been tracking these data for years to learn more. 

Updated compensation data includes good news for multiple subspecialties. The new report also examines private equity's impact on employment models and how much male cardiologists earn compared to females.

Trimed Popup
Trimed Popup