Geisinger, IBM build predictive tool to gauge sepsis risk

Geisinger has tapped IBM’s AI expertise and come up with a way to predict hospital patients’ risk of sepsis. In the process, the method can increase chances of survival in those who have the tricky and potentially life-threatening condition.

The integrated 13-hospital health system, which operates in Pennsylvania and New Jersey, worked with IBM’s data science and AI teams to train the predictive model on clinical data from thousands of de-identified sepsis patients spanning a decade, according to a Geisinger news release.

Geisinger says it hopes to leverage the new model to develop more personalized clinical care plans for at-risk sepsis patients.

Researchers testing the model used open-source tools from IBM Watson Studio to predict patient mortality during the hospitalization period or during the 90 days following their hospital stay.

“The model helped researchers identify clinical biomarkers associated with higher rates of mortality from sepsis by predicting death or survival of patients in the test data,” Geisinger reports.

The project showed numerous risk factors can combine to increase a patient’s chances of getting sepsis. These included age, prior cancer diagnosis, decreased blood pressure, number of hospital transfers and time spent on blood-pressure drugs, as well as the type of the culprit pathogen.

Geisinger notes that sepsis has historically proven hard to catch early. It hits about 1.7 million American adults, contributing to the deaths of more than a quarter-million people a year.

Dave Pearson

Dave P. has worked in journalism, marketing and public relations for more than 30 years, frequently concentrating on hospitals, healthcare technology and Catholic communications. He has also specialized in fundraising communications, ghostwriting for CEOs of local, national and global charities, nonprofits and foundations.

Around the web

The tirzepatide shortage that first began in 2022 has been resolved. Drug companies distributing compounded versions of the popular drug now have two to three more months to distribute their remaining supply.

The 24 members of the House Task Force on AI—12 reps from each party—have posted a 253-page report detailing their bipartisan vision for encouraging innovation while minimizing risks. 

Merck sent Hansoh Pharma, a Chinese biopharmaceutical company, an upfront payment of $112 million to license a new investigational GLP-1 receptor agonist. There could be many more payments to come if certain milestones are met.