Geisinger, IBM build predictive tool to gauge sepsis risk

Geisinger has tapped IBM’s AI expertise and come up with a way to predict hospital patients’ risk of sepsis. In the process, the method can increase chances of survival in those who have the tricky and potentially life-threatening condition.

The integrated 13-hospital health system, which operates in Pennsylvania and New Jersey, worked with IBM’s data science and AI teams to train the predictive model on clinical data from thousands of de-identified sepsis patients spanning a decade, according to a Geisinger news release.

Geisinger says it hopes to leverage the new model to develop more personalized clinical care plans for at-risk sepsis patients.

Researchers testing the model used open-source tools from IBM Watson Studio to predict patient mortality during the hospitalization period or during the 90 days following their hospital stay.

“The model helped researchers identify clinical biomarkers associated with higher rates of mortality from sepsis by predicting death or survival of patients in the test data,” Geisinger reports.

The project showed numerous risk factors can combine to increase a patient’s chances of getting sepsis. These included age, prior cancer diagnosis, decreased blood pressure, number of hospital transfers and time spent on blood-pressure drugs, as well as the type of the culprit pathogen.

Geisinger notes that sepsis has historically proven hard to catch early. It hits about 1.7 million American adults, contributing to the deaths of more than a quarter-million people a year.

Dave Pearson

Dave P. has worked in journalism, marketing and public relations for more than 30 years, frequently concentrating on hospitals, healthcare technology and Catholic communications. He has also specialized in fundraising communications, ghostwriting for CEOs of local, national and global charities, nonprofits and foundations.

Around the web

With generative AI coming into its own, AI regulators must avoid relying too much on principles of risk management—and not enough on those of uncertainty management.

Cardiovascular devices are more likely to be in a Class I recall than any other device type. The FDA's approval process appears to be at least partially responsible, though the agency is working to make some serious changes. We spoke to a researcher who has been tracking these data for years to learn more. 

Updated compensation data includes good news for multiple subspecialties. The new report also examines private equity's impact on employment models and how much male cardiologists earn compared to females.

Trimed Popup
Trimed Popup