Deep learning AI IDs diabetic retinopathy, eye diseases using retinal images

Researchers have developed a deep learning system (DLS) using artificial intelligence (AI) capable of identifying diabetic retinopathy and related eye diseases using retinal images, according to a study published in JAMAThe system's performance was comparable to human graders.

The DLS system was trained to identify diabetic retinopathy using 76,370 images, possible glaucoma with 125,189 images and age-related macular degeneration (AMD) with 72,610 images. Performance of the system was measured from identification of diabetic retinopathy using 112,648 images, possible glaucoma with 71,896 images and AMD with 35,948 images.

To evaluate the system, researchers tested the sensitivity and specificity of DLS using 494,661 retinal images. Results showed the DLS system achieved 90.5 percent sensitivity and specificity of 91.6 percent for detecting referable diabetic retinopathy; 100 percent sensitivity and 91.1 percent specificity for vision-threatening diabetic retinopathy; 96.4 percent sensitivity and 87.2 percent specificity for possible glaucoma; and 93.2 percent sensitivity and 88.7 percent specificity for age-related macular degeneration when compared to a professional grader.

“In this evaluation of retinal images from multiethnic cohorts of patients with diabetes, the DLS had high sensitivity and specificity for identifying diabetic retinopathy and related eye diseases,” concluded first author Daniel Shu Wei Ting, MD, PhD and colleagues. “Further research is necessary to evaluate the applicability of the DLS in health care settings and the utility of the DLS to improve vision outcomes.”

""
Cara Livernois, News Writer

Cara joined TriMed Media in 2016 and is currently a Senior Writer for Clinical Innovation & Technology. Originating from Detroit, Michigan, she holds a Bachelors in Health Communications from Grand Valley State University.

Around the web

The tirzepatide shortage that first began in 2022 has been resolved. Drug companies distributing compounded versions of the popular drug now have two to three more months to distribute their remaining supply.

The 24 members of the House Task Force on AI—12 reps from each party—have posted a 253-page report detailing their bipartisan vision for encouraging innovation while minimizing risks. 

Merck sent Hansoh Pharma, a Chinese biopharmaceutical company, an upfront payment of $112 million to license a new investigational GLP-1 receptor agonist. There could be many more payments to come if certain milestones are met.