Brain-computer interface, virtual avatar promote movement in brain

Researchers from the University of Houston have completed a study using a brain-computer interface paired with a virtual avatar to control gait to assist patients recovering the ability to walk after a stroke and other impairments. The study, published in Scientific Reports, aimed to further development of brain-computer interfaces.

Conduced at the university's Noninvasive Brain-Machine Interface System Laboratory, the study involved a non-invasive monitoring system to pinpoint which parts of the brain were involved in activity to create an algorithm, or brain-machine interface, to translate brain signals into movements. Along with a virtual walking avatar to control gait, the technology is able to promote cortical involvement when walking.

"Voluntary control of movements is crucial for motor learning and physical rehabilitation," wrote the authors. "Our results suggest the possible benefits of using a closed-loop EEG-based BCI-VR (brain-computer interface-virtual reality) system in inducing voluntary control of human gait."

Led by Jose Luis Contreras-Vidal, professor of electrical and computer engineering at UH and senior author of the paper, the study enrolled eight healthy participants who were fitted with a headset and motion sensors at the hip, knee and ankle to track movement when walking on a treadmill as they watched an avatar on a monitor. The avatar, moving according to the participants sensors, was later controlled by the brain-computer interface. While less accurate than using motion sensors, participants were able to move the avatar using the brain interface to increase brain activity in the motion part of the brain.

"The appeal of brain-machine interface is that it places the user at the center of the therapy," Contreras-Vidal said. "They have to be engaged, because they are in control. It's like learning to use a new tool or sport. You have to understand how the tool works. The brain needs time to learn that."

""
Cara Livernois, News Writer

Cara joined TriMed Media in 2016 and is currently a Senior Writer for Clinical Innovation & Technology. Originating from Detroit, Michigan, she holds a Bachelors in Health Communications from Grand Valley State University.

Around the web

Compensation for heart specialists continues to climb. What does this say about cardiology as a whole? Could private equity's rising influence bring about change? We spoke to MedAxiom CEO Jerry Blackwell, MD, MBA, a veteran cardiologist himself, to learn more.

The American College of Cardiology has shared its perspective on new CMS payment policies, highlighting revenue concerns while providing key details for cardiologists and other cardiology professionals. 

As debate simmers over how best to regulate AI, experts continue to offer guidance on where to start, how to proceed and what to emphasize. A new resource models its recommendations on what its authors call the “SETO Loop.”