3D-printing method produces living tissue for regenerative medicine

Researchers from the University of Oxford have developed a new 3D-printing method to improve how laboratory-grown cells form living structures. Explained in Scientific Reports, the new method aims to change regenerative medicine by producing complex tissues and cartilage capable of supporting or repairing damaged areas in the body.

This study described a new method of additive printing, led by Hagan Bayley, professor of chemical biology in Oxford University, that allows cells to mimic or enhance natural tissue.

“We were aiming to fabricate 3D living tissues that could display the basic behaviors and physiology found in natural organisms,” said Alexander Graham, lead author and 3D booprinting scientist at OxSyBio (Oxford Synthetic Biology). “To date, there are limited examples of printed tissues, which have the complex cellular architecture of native tissues. Hence, we focused on designing a high-resolution cell printing platform, from relatively inexpensive components, that could be used to reproducibly produce artificial tissues with appropriate complexity from a range of cells including stem cells.”

Researchers used cells with protective nanoliter droplets wrapped in a lipid coating, layered on top of one another, to produce living structures. These printed tissues allow for the artificial tissue to mimic natural tissue. With further development, researchers believe the regenerative tissue could be used to reproduce human tissue models for clinical testing.

“The bioprinting approach developed with Oxford University is very exciting, as the cellular constructs can be printed efficiently at extremely high resolution with very little waste,” said Adam Perriman from the University of Bristol. “The ability to 3D print with adult stem cells and still have them differentiate was remarkable, and really shows the potential of this new methodology to impact regenerative medicine globally.”

""
Cara Livernois, News Writer

Cara joined TriMed Media in 2016 and is currently a Senior Writer for Clinical Innovation & Technology. Originating from Detroit, Michigan, she holds a Bachelors in Health Communications from Grand Valley State University.

Around the web

Compensation for heart specialists continues to climb. What does this say about cardiology as a whole? Could private equity's rising influence bring about change? We spoke to MedAxiom CEO Jerry Blackwell, MD, MBA, a veteran cardiologist himself, to learn more.

The American College of Cardiology has shared its perspective on new CMS payment policies, highlighting revenue concerns while providing key details for cardiologists and other cardiology professionals. 

As debate simmers over how best to regulate AI, experts continue to offer guidance on where to start, how to proceed and what to emphasize. A new resource models its recommendations on what its authors call the “SETO Loop.”