AI picks the right test for chest pain

Yale researchers have demonstrated a machine learning tool for choosing between coronary imaging and stress testing in patients who present with suspected coronary artery disease.  

In a study current in European Heart Journal, the team shows how the personalized-care tool consistently picked the optimal exam for achieving good outcomes in more than 2,100 patients.

Additionally, the tool avoided algorithmic bias by leveraging both arms of a major clinical trial to neutralize the skewing effect that real-world clinical decisions can have on study data.

“Our approach synthesizes the complex relationship between a large number of pre-randomization characteristics in creating and visualizing a comprehensive phenomap of patients, with an individualized assessment of the risk of adverse cardiovascular events with anatomical or functional testing for assessing chest pain,” the authors write.

The team recorded a significantly reduced risk of adverse cardiac events in patients whose exam choices matched those the AI tool would have recommended had it been there.

In Yale’s own coverage of the work, Evangelos Oikonomou, MD, DPhil, says the AI tool is technically sophisticated but practical for clinical settings.

“It relies on routinely captured patient characteristics and can be used by clinicians with a simple online calculator or can be incorporated in the electronic health record,” he says.

The study is posted in full for free.

Dave Pearson

Dave P. has worked in journalism, marketing and public relations for more than 30 years, frequently concentrating on hospitals, healthcare technology and Catholic communications. He has also specialized in fundraising communications, ghostwriting for CEOs of local, national and global charities, nonprofits and foundations.

Around the web

The tirzepatide shortage that first began in 2022 has been resolved. Drug companies distributing compounded versions of the popular drug now have two to three more months to distribute their remaining supply.

The 24 members of the House Task Force on AI—12 reps from each party—have posted a 253-page report detailing their bipartisan vision for encouraging innovation while minimizing risks. 

Merck sent Hansoh Pharma, a Chinese biopharmaceutical company, an upfront payment of $112 million to license a new investigational GLP-1 receptor agonist. There could be many more payments to come if certain milestones are met.