3 ‘states of consistency’ every AI program needs to succeed

Of 52 AI models analyzed by MIT’s Center for Information Systems Research over the past two years, 31 have been deployed. The rest were in pilot phases or under development.

The authors of a research briefing on the analysis found that organizations taking AI projects from raw concept through meaningful deployment achieve three “interdependent states of consistency” while operating in the midst of “dynamic, changing forces.”

The three states:

  • Scientific consistency, which produces an AI model that can generate accurate outcomes;
  • Application consistency, which creates an AI solution that can achieve goals in situ over time; and
  • Stakeholder consistency, which generates AI benefits across a network of people with a keen interest in the system’s success.  

The authors propose that organizations pulling off the triple feat are, knowingly or not, demonstrating an adaptive management approach called AI alignment.

They describe several real-world examples of such success, noting that the rewards of AI alignment are not always measurable in monetary terms.

The report was released in November but refreshed in a new summary from MIT’s Sloan School of Management Jan. 6.

Summary here, research briefing here.

Dave Pearson

Dave P. has worked in journalism, marketing and public relations for more than 30 years, frequently concentrating on hospitals, healthcare technology and Catholic communications. He has also specialized in fundraising communications, ghostwriting for CEOs of local, national and global charities, nonprofits and foundations.

Around the web

Compensation for heart specialists continues to climb. What does this say about cardiology as a whole? Could private equity's rising influence bring about change? We spoke to MedAxiom CEO Jerry Blackwell, MD, MBA, a veteran cardiologist himself, to learn more.

The American College of Cardiology has shared its perspective on new CMS payment policies, highlighting revenue concerns while providing key details for cardiologists and other cardiology professionals. 

As debate simmers over how best to regulate AI, experts continue to offer guidance on where to start, how to proceed and what to emphasize. A new resource models its recommendations on what its authors call the “SETO Loop.”