AI with location data may fine-tune flu forecasting

Computer scientists have used a graph neural network to recognize flu cases as regionally interconnected clusters. This twist on flu forecasting lets the team’s algorithm spot infection patterns within and between regions, aiding decision-making by health officials.

Yue Ning, PhD, and colleagues at Stevens Institute of Technology in New Jersey say their AI technique produces an 11% boost in accuracy over that supplied by other contemporary systems.

On this strength, they claim, the method—which involves “capturing the interplay of space and time”—can predict flu outbreaks up to 15 weeks ahead of their arrival.

“Our model is also extremely transparent,” Ning says in a news release. “Where other AI forecasts use ‘black box’ algorithms, we’re able to explain why our system has made specific predictions, and how it thinks outbreaks in different locations are impacting one another.”

Ning and colleagues trained the algorithm on real-world state and regional data from the U.S. and Japan. They tested its predictions against historical flu data.

The novel technique has potential for predicting local and regional COVID outbreaks, the institute suggests.

Dave Pearson

Dave P. has worked in journalism, marketing and public relations for more than 30 years, frequently concentrating on hospitals, healthcare technology and Catholic communications. He has also specialized in fundraising communications, ghostwriting for CEOs of local, national and global charities, nonprofits and foundations.

Around the web

The American College of Cardiology has shared its perspective on new CMS payment policies, highlighting revenue concerns while providing key details for cardiologists and other cardiology professionals. 

As debate simmers over how best to regulate AI, experts continue to offer guidance on where to start, how to proceed and what to emphasize. A new resource models its recommendations on what its authors call the “SETO Loop.”

FDA Commissioner Robert Califf, MD, said the clinical community needs to combat health misinformation at a grassroots level. He warned that patients are immersed in a "sea of misinformation without a compass."

Trimed Popup
Trimed Popup