Interpretability of radiological AI deemed essential for clinical adoption
If a medical AI algorithm performs well, why let the proverbial black box undermine confidence in it?
Or, as asked in an opinion piece published May 27 in Radiology: Artificial Intelligence: “Why shouldn’t we simply trust the model and ignore why it made a specific decision?”
The issue at hand is interpretability, the degree to which the human mind can comprehend the logic behind an AI algorithm’s conclusion.
Writing in response to findings published the same day in the same journal, Despina Kontos, PhD, and Aimilia Gastounioti, PhD, both of the radiology department at the University of Pennsylvania, suggest such interpretability may not be essential—but it surely can speed AI adoption into routine clinical practice.
An understandable interpretation of an erroneous decision or prediction “helps one understand the cause of the error and delivers a direction for how to fix it,” the authors point out.
Meanwhile, an interpretation of a correct decision or prediction “helps verify the logic for a specific conclusion, making sure that causal relationships are picked up and alleviating potential suspicion about confounding or bias.”
In either case, “it is easier for radiologists and patients to trust a model that explains its decisions, including its failures, compared with a ‘black box.’”
Kontos and Gastounioti composed their take as commentary on review findings published the same day in the same journal.
The findings, presented by Mauricio Reyes of the University of Bern in Switzerland and colleagues, draw from radiologists’ opinions on the topic at hand and include three essential takeaways:
- Radiology artificial intelligence (AI) systems often have numerous computational layers that can make it difficult for a human to interpret a system’s output.
- Interpretability methods are being developed such that AI systems can be explained by using visualization, counterexamples or semantics.
- By enhancing their interpretability, AI systems can be better verified, trusted and adopted in radiology practice.
Journal publisher RSNA has posted both the Reyes et al. study and the Kontos–Gastounioti commentary in full for free.