Machine learning use in healthcare still limited to proof-of-concept studies

Machine learning (ML) technology has gained popularity in recent years, but its use in healthcare remains largely limited to proof-of-concept academic studies, according to a new study published in Artificial Intelligence in Medicine.

“AI has the potential to profoundly transform medical practice by aiding physicians’ interpretation of complex and diverse data types,” wrote lead author David Ben-Israel, department of clinical neurosciences at the University of Calgary, and colleagues. “If AI successfully translates into a busy clinician’s practice, it stands to improve the performance of diagnosis, prognostication and management decisions.”

So will ML translate into a busy practice? Ben-Israel and colleagues aimed to track the progression of ML implementation in modern health systems, searching through original studies on the topic published between Jan. 1, 2000, and May 1, 2018.

All studies were published in English and specifically examined the use of ML to improve patient care. Editorials, book chapters, white papers, case reports, conference abstracts and other similar documents were all excluded.

Overall, 386 publications were identified that involved the implementation of a ML strategy “to address a specific clinical problem.” Ninety-eight percent of those studies were retrospective. The authors wrote that ML stands to be a true game-changer for healthcare, but certain limitations remain that must be addressed.

“Access to real-time clinical data, data security, physician approval of ‘black box’ generated results, and performance evaluation are important aspects of implementing a ML based data strategy,” Ben-Israel et al. concluded. “Not all clinical problems will be amenable to an AI based data strategy. The careful definition of a clinical problem and the gathering of requisite data for analysis are important first steps in determining if computer science methods within medicine may advance what human intelligence has been able to accomplish.”

Michael Walter
Michael Walter, Managing Editor

Michael has more than 18 years of experience as a professional writer and editor. He has written at length about cardiology, radiology, artificial intelligence and other key healthcare topics.

Around the web

The tirzepatide shortage that first began in 2022 has been resolved. Drug companies distributing compounded versions of the popular drug now have two to three more months to distribute their remaining supply.

The 24 members of the House Task Force on AI—12 reps from each party—have posted a 253-page report detailing their bipartisan vision for encouraging innovation while minimizing risks. 

Merck sent Hansoh Pharma, a Chinese biopharmaceutical company, an upfront payment of $112 million to license a new investigational GLP-1 receptor agonist. There could be many more payments to come if certain milestones are met.