AI helps predict when DCIS will progress to invasive breast cancer

Researchers have uncovered a new way to determine when ductal carcinoma in situ (DCIS) is most likely to progress to a more invasive cancer, according to new findings published in Breast Cancer Research.

The team used an advanced computer program to examine lumpectomy tissue samples from 62 different patients diagnosed with DCIS. This helped them focus on certain features of the tissue samples—tumor size and orientation, to be specific—that seemed to suggest a higher likelihood of DCIS progression. Those features were then combined with machine learning to establish detailed risk categories.

The researchers hope their work can limit the amount of radiation patients are exposed to when receiving care. It could also keep patients from undergoing the Oncotype DX genetic test when not necessary.

“Current testing places patients in high risk, low risk and indeterminate risk—but then treats those indeterminates with radiation, anyway,” Anant Madabhushi, department of biomedical engineering at Case Western Reserve University in Cleveland, said in a prepared statement. “They err on the side of caution, but we’re saying that it appears that it should go the other way—the middle should be classified with the lower risk.”

“This could be a tool for determining who really needs the radiation, or who needs the gene test, which is also very expensive,” lead author Haojia Li, department of biomedical engineering at Case Western Reserve University, said in the same statement.

Michael Walter
Michael Walter, Managing Editor

Michael has more than 18 years of experience as a professional writer and editor. He has written at length about cardiology, radiology, artificial intelligence and other key healthcare topics.

Around the web

The tirzepatide shortage that first began in 2022 has been resolved. Drug companies distributing compounded versions of the popular drug now have two to three more months to distribute their remaining supply.

The 24 members of the House Task Force on AI—12 reps from each party—have posted a 253-page report detailing their bipartisan vision for encouraging innovation while minimizing risks. 

Merck sent Hansoh Pharma, a Chinese biopharmaceutical company, an upfront payment of $112 million to license a new investigational GLP-1 receptor agonist. There could be many more payments to come if certain milestones are met.