AI tool guides management of elevated blood sugar during surgery

Patients whose blood glucose levels spike during surgery are at heightened risk for poor overall outcomes. A new AI tool has proven effective at predicting, prior to surgery, which patients will have the problem while under the knife.

Such informed anticipation can help surgical teams plan ahead for optimal resource allocation and targeted glucose management in the OR for these patients.

A study documenting the tool’s development, testing and suggested applications is running Methods of Information in Medicine.

Senior author Bala Nair, PhD, of the University of Washington in Seattle and colleagues built and validated several separate prediction tools using a dataset of perioperative records from more then 6,500 patients.

Comparing the tools against one another, the team found all those using machine learning were more accurate than a conventional linear regression model.

The best of the machine-learning algorithms, an extreme gradient boosting model, had the smallest median prediction error and the narrowest interquartile error range.

The researchers implemented this model as a web application called “Hyper-G” and demonstrated its usefulness at the point of care.  

“Machine learning models are able to accurately predict peak glucose levels during surgery,” Nair et al. concluded. “Implementation of such a model as a web-based application can facilitate optimal decision-making and advance planning of glucose management strategies.”

Dave Pearson

Dave P. has worked in journalism, marketing and public relations for more than 30 years, frequently concentrating on hospitals, healthcare technology and Catholic communications. He has also specialized in fundraising communications, ghostwriting for CEOs of local, national and global charities, nonprofits and foundations.

Around the web

The American College of Cardiology has shared its perspective on new CMS payment policies, highlighting revenue concerns while providing key details for cardiologists and other cardiology professionals. 

As debate simmers over how best to regulate AI, experts continue to offer guidance on where to start, how to proceed and what to emphasize. A new resource models its recommendations on what its authors call the “SETO Loop.”

FDA Commissioner Robert Califf, MD, said the clinical community needs to combat health misinformation at a grassroots level. He warned that patients are immersed in a "sea of misinformation without a compass."

Trimed Popup
Trimed Popup