AI tool guides management of elevated blood sugar during surgery

Patients whose blood glucose levels spike during surgery are at heightened risk for poor overall outcomes. A new AI tool has proven effective at predicting, prior to surgery, which patients will have the problem while under the knife.

Such informed anticipation can help surgical teams plan ahead for optimal resource allocation and targeted glucose management in the OR for these patients.

A study documenting the tool’s development, testing and suggested applications is running Methods of Information in Medicine.

Senior author Bala Nair, PhD, of the University of Washington in Seattle and colleagues built and validated several separate prediction tools using a dataset of perioperative records from more then 6,500 patients.

Comparing the tools against one another, the team found all those using machine learning were more accurate than a conventional linear regression model.

The best of the machine-learning algorithms, an extreme gradient boosting model, had the smallest median prediction error and the narrowest interquartile error range.

The researchers implemented this model as a web application called “Hyper-G” and demonstrated its usefulness at the point of care.  

“Machine learning models are able to accurately predict peak glucose levels during surgery,” Nair et al. concluded. “Implementation of such a model as a web-based application can facilitate optimal decision-making and advance planning of glucose management strategies.”

Dave Pearson

Dave P. has worked in journalism, marketing and public relations for more than 30 years, frequently concentrating on hospitals, healthcare technology and Catholic communications. He has also specialized in fundraising communications, ghostwriting for CEOs of local, national and global charities, nonprofits and foundations.

Around the web

The tirzepatide shortage that first began in 2022 has been resolved. Drug companies distributing compounded versions of the popular drug now have two to three more months to distribute their remaining supply.

The 24 members of the House Task Force on AI—12 reps from each party—have posted a 253-page report detailing their bipartisan vision for encouraging innovation while minimizing risks. 

Merck sent Hansoh Pharma, a Chinese biopharmaceutical company, an upfront payment of $112 million to license a new investigational GLP-1 receptor agonist. There could be many more payments to come if certain milestones are met.