Care journeys of breast-cancer patients illuminated by AI

Allowing natural language processing to pore over disparate data stored in electronic health records, researchers in Canada have shown the AI-based technology can reveal real-world experiences and outcomes of patients with stage III breast cancer.

Mark Levine, MD, of McMaster University and colleagues had their work published online Aug. 1 in JCO Clinical Cancer Informatics.

After drawing and anonymizing data from 50 relevant patients in their health system’s EHR, the team developed specialized NLP annotators to mine unstructured clinical text and render it in a structured format.

To validate their approach, they applied the annotators to 19 more patients.

Their tool successfully extracted information on tumor stage, patient age, initial treatment and other factors that made it possible to build timelines showing key steps along patients’ care journeys.

Further, comparing the tool’s results with the gold standard—clinicians’ notes in medical charts—they found that, for 171 data elements, NLP and the chart agreed 76% of the time.

Moreover, with “additional manipulation using simple logic,” the disagreement was reduced to only six elements, the authors report.

“It is possible to extract, read and combine data from the EHR to view the patient journey,” Levine et al. concluded.

Dave Pearson

Dave P. has worked in journalism, marketing and public relations for more than 30 years, frequently concentrating on hospitals, healthcare technology and Catholic communications. He has also specialized in fundraising communications, ghostwriting for CEOs of local, national and global charities, nonprofits and foundations.

Around the web

Compensation for heart specialists continues to climb. What does this say about cardiology as a whole? Could private equity's rising influence bring about change? We spoke to MedAxiom CEO Jerry Blackwell, MD, MBA, a veteran cardiologist himself, to learn more.

The American College of Cardiology has shared its perspective on new CMS payment policies, highlighting revenue concerns while providing key details for cardiologists and other cardiology professionals. 

As debate simmers over how best to regulate AI, experts continue to offer guidance on where to start, how to proceed and what to emphasize. A new resource models its recommendations on what its authors call the “SETO Loop.”