UCLA algorithm nearly matches experienced radiologists in prostate cancer detection

Researchers from the University of California, Los Angeles, have developed an artificial neural network capable of identifying and diagnosing prostate cancer almost as well as radiologists with a decade of experience.

The system, FocalNet, finds and predicts the aggressiveness of cancers by evaluating MRIs, much like radiologists. Unlike radiologists, it does that by using an algorithm that comprises more than a million trainable variables.

“Multiparametric MRI (mp-MRI) is considered the best noninvasive imaging modality for diagnosing prostate cancer,” first author Ruiming Cao and colleagues wrote in IEEE Transactions on Medical Imaging. “However, mp-MRI for prostate cancer diagnosis is currently limited by the qualitative or semi-qualitative interpretation criteria, leading to inter-reader variability and a suboptimal ability to assess lesion aggressiveness.

“Convolutional neural networks are a powerful method to automatically learn the discriminative features for various text tasks, including cancer detection.”

The team at UCLA trained FocalNet by feeding it scans from 417 men with prostate cancer. The algorithm was asked to analyze the images, filing away the information it learned to better assess and classify tumors in the future. In testing against experienced radiologists who analyzed the same images, FocalNet achieved an accuracy of 80.5%—just below the radiologists’ 83.9%.

Cao et al. said their research suggests an AI system like FocalNet could save time in cancer diagnosis and might serve as a tool to provide diagnostic guidance to radiologists with less real-world experience.

""

After graduating from Indiana University-Bloomington with a bachelor’s in journalism, Anicka joined TriMed’s Chicago team in 2017 covering cardiology. Close to her heart is long-form journalism, Pilot G-2 pens, dark chocolate and her dog Harper Lee.

Around the web

A string of executive orders from the White House created serious concerns among radiologists and other healthcare providers throughout the United States. The American College of Radiology issued a statement to help guide its members through the chaos. 

Bridgefield Capital, founded in 2015, has previously invested in such popular brands as Cirque Du Soleil, Del Monte and Quiksilver. This transaction is expected to be completed in the second half of 2025. 

Given the precarious excitement of the moment—or is it exciting precarity?—policymakers and healthcare leaders must set directives guiding not only what to do with AI but also when to do it.